6,655 research outputs found

    Mascons as structural relief on a lunar Moho

    Get PDF
    Mascons as structural relief on lunar Moh

    Statistical Properties of Interacting Bose Gases in Quasi-2D Harmonic Traps

    Full text link
    The analytical probability distribution of the quasi-2D (and purely 2D) ideal and interacting Bose gas are investigated by using a canonical ensemble approach. Using the analytical probability distribution of the condensate, the statistical properties such as the mean occupation number and particle number fluctuations of the condensate are calculated. Researches show that there is a continuous crossover of the statistical properties from a quasi-2D to a purely 2D ideal or interacting gases. Different from the case of a 3D Bose gas, the interaction between atoms changes in a deep way the nature of the particle number fluctuations.Comment: RevTex, 10pages, 4 figures, E-mail: [email protected]

    Gravity from a fermionic condensate of a gauge theory

    Full text link
    The most prominent realization of gravity as a gauge theory similar to the gauge theories of the standard model comes from enlarging the gauge group from the Lorentz group to the de Sitter group. To regain ordinary Einstein-Cartan gravity the symmetry must be broken, which can be accomplished by known quasi-dynamic mechanisms. Motivated by symmetry breaking models in particle physics and condensed matter systems, we propose that the symmetry can naturally be broken by a homogenous and isotropic fermionic condensate of ordinary spinors. We demonstrate that the condensate is compatible with the Einstein-Cartan equations and can be imposed in a fully de Sitter invariant manner. This lends support, and provides a physically realistic mechanism for understanding gravity as a gauge theory with a spontaneously broken local de Sitter symmetry.Comment: 16 page

    The Birth of a Galaxy - III. Propelling reionisation with the faintest galaxies

    Full text link
    Starlight from galaxies plays a pivotal role throughout the process of cosmic reionisation. We present the statistics of dwarf galaxy properties at z > 7 in haloes with masses up to 10^9 solar masses, using a cosmological radiation hydrodynamics simulation that follows their buildup starting with their Population III progenitors. We find that metal-enriched star formation is not restricted to atomic cooling (Tvir104T_{\rm vir} \ge 10^4 K) haloes, but can occur in haloes down to masses ~10^6 solar masses, especially in neutral regions. Even though these smallest galaxies only host up to 10^4 solar masses of stars, they provide nearly 30 per cent of the ionising photon budget. We find that the galaxy luminosity function flattens above M_UV ~ -12 with a number density that is unchanged at z < 10. The fraction of ionising radiation escaping into the intergalactic medium is inversely dependent on halo mass, decreasing from 50 to 5 per cent in the mass range logM/M=7.08.5\log M/M_\odot = 7.0-8.5. Using our galaxy statistics in a semi-analytic reionisation model, we find a Thomson scattering optical depth consistent with the latest Planck results, while still being consistent with the UV emissivity constraints provided by Lyα\alpha forest observations at z = 4-6.Comment: 21 pages, 15 figures, 4 tables. Accepted in MNRA

    Changes in risk perception and self-reported protective behaviour during the first week of the COVID-19 pandemic in the United States

    Get PDF
    Efforts to change behaviour are critical in minimizing the spread of highly transmissible pandemics such as COVID-19. However, it is unclear whether individuals are aware of disease risk and alter their behaviour early in the pandemic. We investigated risk perception and self-reported engagement in protective behaviours in 1591 United States-based individuals cross-sectionally and longitudinally over the first week of the pandemic. Subjects demonstrated growing awareness of risk and reported engaging in protective behaviours with increasing frequency but underestimated their risk of infection relative to the average person in the country. Social distancing and hand washing were most strongly predicted by the perceived probability of personally being infected. However, a subgroup of individuals perceived low risk and did not engage in these behaviours. Our results highlight the importance of risk perception in early interventions during large-scale pandemics

    Changes in risk perception and self-reported protective behaviour during the first week of the COVID-19 pandemic in the United States

    Get PDF
    Efforts to change behaviour are critical in minimizing the spread of highly transmissible pandemics such as COVID-19. However, it is unclear whether individuals are aware of disease risk and alter their behaviour early in the pandemic. We investigated risk perception and self-reported engagement in protective behaviours in 1591 United States-based individuals cross-sectionally and longitudinally over the first week of the pandemic. Subjects demonstrated growing awareness of risk and reported engaging in protective behaviours with increasing frequency but underestimated their risk of infection relative to the average person in the country. Social distancing and hand washing were most strongly predicted by the perceived probability of personally being infected. However, a subgroup of individuals perceived low risk and did not engage in these behaviours. Our results highlight the importance of risk perception in early interventions during large-scale pandemics

    Radiation Hydrodynamical Instabilities in Cosmological and Galactic Ionization Fronts

    Full text link
    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25 - 500 solar masses, with H II regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.Comment: 6 pages, 4 figures, accepted for proceedings of HEDLA2010, Caltech, March 15 - 18, 201

    The X-ray luminosity function of AGN at z~3

    Full text link
    We combine Lyman-break colour selection with ultradeep (> 200 ks) Chandra X-ray imaging over a survey area of ~0.35 deg^2 to select high redshift AGN. Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at z~3. Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at z=1, we find no evidence that the faint slope of the XLF flattens at high z, but we do find significant (factor ~3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity L*. Our data therefore support models of luminosity-dependent density evolution between z=1 and z=3. A sharp upturn in the the XLF is seen at the very lowest luminosities (Lx < 10^42.5 erg s^-1), most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.Comment: 16 pages, 9 figures, accepted for publication in MNRA
    corecore